
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 28 (2003), Pages 225–238

Longest subsequences in permutations

M.H. Albert1 R.E. L. Aldred2 M.D. Atkinson1

H.P. van Ditmarsch1 B.D. Handley2 C.C. Handley1

1Department of Computer Science 2Department of Mathematics and Statistics
University of Otago

New Zealand

J. Opatrny

Department of Computer Science
University of Concordia

Canada

Abstract

For a class of permutations X the LXS problem is to identify in a given
permutation σ of length n its longest subsequence that is isomorphic to
a permutation of X . In general LXS is NP-hard. A general construction
that produces polynomial time algorithms for many classes X is given.
More efficient algorithms are given when X is defined by avoiding some
set of permutations of length 3.

1 Introduction

The properties of the Longest Increasing Subsequence (LIS) of a sequence of values
have been studied for many years. In the case where the sequence of values is a
permutation much interest has centred on the probability distribution of the length
of an LIS ; a good survey of these investigations is given in [2]. Computing the LIS is
a favourite example in many algorithms courses (and books, see [8, 9, 14]) because
it neatly illustrates the design paradigm of dynamic programming. The algorithm
is due initially to Schensted [11] and has run-time complexity O(n log n) (proved
essentially optimal by Fredman [7]). It has recently become an important part of the
MUMmer system [6] for aligning whole genomes.

The length of a LIS of a sequence σ is a good measure of the “increasing tendency”
of σ. In some data processing situations we may have a sequence of initially sorted
data that is subjected to a small number of alterations and so is no longer entirely

226 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

increasing. It is useful to be aware of this since some sorting methods have extreme
performance (either good or bad) on such data sets (see [3]). In this context it is
helpful to define the defect of a sequence as the minimal number of elements that
have to be deleted to obtain an increasing sequence. Then the smaller the defect of
a sequence the more it has a tendency to be increasing. For future reference we note
the obvious fact that the defect cannot go up if we pass to a subsequence.

In this paper we consider a problem analogous to that of finding the LIS, but in
a more general context, that of permutation patterns, which is a rapidly growing
area of combinatorics. A permutation π is said to occur as a pattern within another
permutation σ if there is a subsequence of σ whose members appear in the same
relative order as the elements of π (for brevity, we say that such a subsequence is
isomorphic to π). For example 3124 occurs as a pattern within 4716352 because of
the subsequence 4135. We also write π � σ and say that π is involved in σ or that
π is a subpermutation of σ.

With this terminology the LIS problem can be stated as follows. Let I be the set of
identity permutations of all lengths. An increasing subsequence of a permutation σ
is just an occurrence within σ of a pattern of I so the LIS problem is to identify the
longest permutation of I that occurs as a pattern within σ. Formulated like this it
seems to be a natural question to replace the set I by other sets of permutations, in
other words, to ask the question:

Longest X-subsequence (LXS) Problem Given a fixed set X of permutations,
is there an efficient algorithm that will find, for any given permutation σ, a longest
permutation of X that is involved in σ?

Just as for the special case X = I we can define the X-defect of a permutation σ as
the minimal number of symbols from σ that must be deleted to obtain a permuta-
tion in X . However, if we want to use the X-defect as a measure of “X-ness”, we
have to overcome the possibility that the X-defect could go up when we pass to a
subsequence. For example, with X = {12, 1243} the X-defect of 1243 is 0 whereas
the X-defect of its subsequence 124 is 1. We circumvent this behaviour by only
considering sets X which are closed in the sense that whenever σ ∈ X and π � σ
then π ∈ X . This is, in fact, a very reasonable restriction to make since closed sets
are a natural object of study in the theory of permutation patterns. Obviously, I is
a closed set.

One of the important properties of a closed set is that it is determined by “forbidden
patterns”. More precisely, if we define the basis B(X) of a closed set X to be the
set of permutations minimal with respect to not lying in X , we have

Lemma 1.1 A permutation σ lies in a closed set X if and only if σ involves no
permutation of B(X).

The LXS problem is clearly at least as difficult as the question of recognising whether
σ ∈ X . The latter question is known to be NP-complete for certain sets X (one
example, see [15, 16], is the set of all permutations that can be sorted by 4 stacks

LONGEST SUBSEQUENCES IN PERMUTATIONS 227

in parallel). On the other hand if X has a polynomial recognition algorithm there is
apparently no reason that the LXS problem should be tractable. Of course, under
this condition, we can decide in polynomial time whether the X-defect is at most k,
for any fixed k, and in particular we can decide this if X is finitely based. Another
connection between the X-defect and being finitely based is provided by

Theorem 1.2 If X is a finitely based closed set then X+m, the closed set of permu-
tations of X-defect at most m, is also finitely based.

Proof: Obviously, X+(m+1) = (X+m)+1 so the theorem follows by induction
provided we can establish the case m = 1. Let us suppose that the basis elements
of X have length at most k. We shall give a bound (best possible, as it happens) on
the length of a basis element of X+1.

Let γ be any permutation of length n and let S1, . . . , St+1 be the index subsets of
{1, . . . , n} which support subsequences isomorphic to basis elements of X ; we call
these the X-basic subsequences of γ. Let γ − j denote the result of deleting the jth

element of γ. Then we have

γ �∈ X+1 ⇐⇒ for all j, γ − j �∈ X

⇐⇒ for all j there exists i with Si ⊆ {1, . . . , j − 1, j + 1, . . . , n}
⇐⇒ for all j there exists i with j �∈ Si

⇐⇒
⋂
i

Si = ∅

If γ is a basis element of X+1 then its X-basic subsequences have trivial intersection.
Choose a minimal family P1, . . . , Pu+1 of X-basic subsequences of γ with trivial
intersection. Since X-basic subsequences have at most k elements we have u ≤ k.
By the minimal choice there exist indices xi with xi �∈ Pi but xi ∈ Pj for all j �= i.
Note that x1, . . . , xu+1 are distinct.

Also ∪iPi = {1, . . . , n} otherwise there is a proper subsequence of γ whose X-basic
subsequences have trivial intersection. So we have

{1, . . . , n} = {x1, . . . , xu+1} ∪
u+1⋃
i=1

(Pi \ {x1, . . . , xi−1, xi+1, . . . , xu+1})

It now follows that

n ≤ u + 1 + (u + 1)(k − u) = (u + 1)(k − u + 1)

The maximal value of the RHS occurs at u = k/2+1 if k is even and at u = (k±1)/2
if k is odd. In any case n is bounded in terms of k.

Example 1 I+1 is the set of all permutations which, except for at most one symbol,
are increasing. By following the method given in the proof above its basis can be
computed as {321, 2143, 2413, 3142, 3412}.

228 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

We have seen that we cannot hope for an efficient algorithm to solve the LXS problem
in general. Nevertheless, for many X , the LXS problem has a polynomial time
algorithm. In section 2 we construct a large number of sets for which there is a
polynomial time algorithm (albeit often of rather high degree). Then, in section 3,
we generalise the LIS problem more directly. Notice that the set I is defined by
the basis permutation 21 of length 2. This suggests that the next cases to consider
should be those closed sets all of whose basis elements have length 3. There are
several such closed sets [12] but for all of them (with one notable exception) we show
how to solve the LXS problem in time O(n2 log n).

Since we appeal frequently to the LIS algorithm, and to some of its properties, we
review it here and gather together some easy consequences for future reference. Let
σ = s1s2 . . . sn be some permutation of length n. We scan σ from left to right. Having
scanned up to symbol si we shall have built a list of longest increasing subsequences
of each length up to i. It turns out that it is sufficient to keep just one subsequence
of each length, namely one of those with smallest final element. These smallest final
elements are all that need to be maintained if we are interested only in the length
of the LIS. We update this information when we process the next symbol of σ (by
doing a binary search) in O(log n) steps. If we wish to compute the LIS itself we
need to keep some back pointers to enable it to be reconstructed once the algorithm
has completed the scan of σ. In our exposition (especially in Section 3) we shall give
details of algorithms modelled on the LIS algorithm that compute only the length of
the LXS ; we rely on the reader to supply the details of the back pointers to compute
the actual LXS itself.

Proposition 1.3 Given a permutation σ = s1s2 . . . sn of length n there are algo-
rithms for the following problems each of time complexity O(n log n):

1. compute a longest increasing subsequence of every initial segment of σ,

2. compute, for every h, a longest increasing subsequence of σ that has final value
no more than h,

3. compute, for every i, a longest increasing subsequence of σ that ends with si.

In addition, there is an algorithm of time complexity O(n2 log n) to compute, for
every i, j with i ≤ j, a longest increasing subsequence that starts at si and ends
at sj.

Proof: The first problem is solved by applying the standard LIS algorithm. The
second can be solved either by a simple modification or by applying the LIS algorithm
to the inverse permutation. The third problem is solved by interpolating an extra
step in the main loop of the LIS algorithm: when the current si is being processed
we can determine to which of the subsequences being kept si should be appended to
get the longest result. For the fourth problem we run the LIS algorithm n times.
The ith time we run it we maintain only subsequences that begin with si.

LONGEST SUBSEQUENCES IN PERMUTATIONS 229

Notice that we can replace the word “increasing” with “decreasing”. Also we can
apply all the algorithms to the reverse of σ.

2 Some polynomial time algorithms

In this section we develop a construction that defines a large number of closed sets
for which the LXS problem has a polynomial time algorithm. We also give a number
of examples to demonstrate the scope of the construction.

Let θ = h1 . . . hr be a permutation of length r and let X1, . . . , Xr be sets of permu-
tations. We define θ[X1, . . . , Xr] as the set of all permutations that can be divided
into segments φ = χ1, . . . , χr with the properties

(i) χi is isomorphic to a permutation of Xi, and

(ii) χi < χj if and only if hi < hj.

The second property introduces a piece of notation that we use frequently: if α and
β are sequences and every component of α is less than every component of β then
we write α < β.

Example 2 Let θ = 213 and suppose that X1, X2, X3 are sets containing respec-
tively 21, 132, 312. Then φ = 54|132|867 ∈ θ[X1, X2, X3] by virtue of the division
into segments shown.

Furthermore, if H is any set of permutations of length r then we define

H[X1, . . . , Xr] =
⋃
θ∈H

θ[X1, . . . , Xr]

We shall use this construction only in the case that the Xi are closed. Since we
allow the empty permutation to occur (necessarily a member of every closed set)
the segments χi in the above definition are also permitted to be empty. One easily
checks

Lemma 2.1 If X1, . . . , Xr are closed then H[X1, . . . , Xr] is closed.

As it stands this notation is only a way of making larger closed sets from smaller
ones in a simple ‘finite’ way but, as the next example foreshadows, we can, with the
aid of recursion, make considerably more complicated constructions.

Example 3 Let S be the set of all stack-sortable permutations (those permutations
defined by avoiding the permutation 231) and let T be the closed set consisting
only of the empty permutation and the permutation 1. Put θ = 132 and consider

230 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

θ[S, T, S]. It is not hard to see that this is the class S itself! In other words, X = S
is a solution of the equation

X = θ[X, T, X] (1)

There are many other solutions of this equation (for example, the set of all per-
mutations). However, given a family of solutions {Xi | i ∈ I}, one easily checks
that ∩i∈IXi is also a solution (and this is true for non-empty solutions too as all
non-empty classes contain the permutation 1). Thus Equation (1) has a minimal
non-empty solution M (under set inclusion).

As generally happens in such circumstances the minimal non-empty solution also has
an internal description. Equation (1) can be used as a rule for generating further
members from ones already known. In this case, as we know that the permutation
1 and the empty permutation lie in M we can deduce immediately that 12, 21, 132
all lie in M and from that we can obtain still larger permutations. It is, in fact, not
hard to see that M = S.

The above example shows the approach we shall take. We shall consider equations
of the form

X = H[X1, . . . , Xr] (2)

where each of X1, . . . , Xr is either bound to a definite closed set Di for which the
LDiI problem is polynomially solvable or is the variable X itself. Such an equation
always has at least one non-empty solution and so has a least non-empty solution
M . The fact that each permutation of M is, via equation (2), built up from smaller
permutations allows us to devise a dynamic programming algorithm for the longest
M -subsequence.

Suppose we have a closed set M defined as the minimal non-empty solution of an
equation of the form above and we are given a permutation σ of length n. We shall
identify the longest M -subsequence of σ by solving the problem in larger and larger
windows on σ.

Let I = i, i + 1, . . . , i + p − 1 and J = j, j + 1, . . . , j + q − 1 be any two integer
ranges in 1, 2, . . . , n. Two such ranges define an p × q window on σ consisting of
the subsequence of σ whose positions are in the first range and whose values are in
the second. The term “window” is derived from thinking of the graph of σ, placing
an p × q rectangle within this graph, and observing which points of the graph it
captures. We order the windows lexicographically by their dimensions p and q. The
total number of windows is a quartic polynomial in n.

Now, suppose we would like to know the longest M -subsequence in a particular
p × q window W defined by intervals I and J . So long as we process windows
lexicographically we may assume we know the answer for all previous windows. We
consider all the ways in which each of I and J may be split into r subintervals;
there are at most O(pr−1qr−1) = O(n2r−2) such ways. Given any splitting we have a
consequent splitting of W into an r × r array of subwindows. We now examine each
θ ∈ H in turn. For a typical θ we identify the r subwindows W1, . . . , Wr which match

LONGEST SUBSEQUENCES IN PERMUTATIONS 231

the form of θ and we solve the LXiS-problem in Wi (directly if Xi is one of the bound
variables, or by looking up a previously computed solution if Xi = X) and thereby
read off an M -subsequence of W . The LMS of W is the longest M -subsequence over
all splittings of W and all θ ∈ H.

This algorithm has to solve a polynomial number of LXS problems all of which take
polynomial time and so is itself a polynomial time algorithm.

Many of the closed sets considered in the next section can be described by the
construction above. To give a better idea of the scope of the construction we give
two further examples.

Example 4 Let P be the class of separable permutations that was studied in [5].
Permutations of P are built up from the identity permutation by two types of com-
bination. If θ, φ ∈ P then also θφ ∈ P if either θ < φ or θ > φ. This definition
makes it easy to see that P is the minimal solution of

X = H(X, X)

where H = {12, 21}.

Example 5 Consider the class whose basis is {213, 3412}. It can be proved that
this class is the minimal solution of

X = H(T, T, X, T)

where T is the class whose only non-empty member is the permutation of length 1
and H = {1432}.

Finally in this section we note that the methods carry over to systems of equations in
several variables. Little expressive power is gained however for the following reason.
Suppose the variables (the symbols not bound to known closed sets) are V1, V2, . . . If
the equation for a variable Vi occurs on the right hand side of the equation defining
a variable Vj then Vi will be a subset of Vj. So circular chains of recursive definitions
imply that the variables can all be replaced by a single variable. Once that is done
the remaining variables are partially ordered by inclusion and we can define each one
using previously determined variables. Essentially, this reduces the multivariate case
to a collection of single variable problems.

3 Basis permutations of length 3

The general algorithms of section 2 can be improved in many cases. This section
considers recognition algorithms for longest X-subsequence for all closed sets X which
can be defined by avoiding permutations of length 3. Such closed sets were first
studied in [12] from an enumeration standpoint. Nowadays their internal structure

232 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

is well understood and we shall appeal to this piece of combinatorial folk-lore in the
descriptions below.

The first thing to note is that we may take advantage of the usual symmetries (since
these may be effected in linear time, which will not affect the complexity of our
algorithms). That means that the classes X to be considered may be taken to
have the following bases that we group into types according to the number of basis
permutations. In the following taxonomy we have omitted the finite classes and the
classes with 4 or more basis elements.

Name Basis Description
A1 321 Merge of two increasing subsequences
A2 231 Stack sortable permutations
B1 321, 312 Direct sum of cyclic blocks
B2 213, 321 Having the profile of 132
B3 231, 312 Layered permutations
B4 213, 312 Increasing segment followed by decreasing segment
C1 231, 312, 321 Layered with layers of lengths 1 and 2
C2 132, 231, 321 Initial point then increasing
C3 132, 213, 321 Cyclic shift of an increasing permutation
C4 132, 213, 312 Increasing permutation with reversed final segment

Each of the finite classes may be taken to have the permutation 321 in its basis.
It is known [1] how to recognise (in time O(n log n)) whether a fixed permutation
avoiding 321 occurs as a subpermutation, so we can easily solve the LXS problem
for any finite class in time O(n log n).

Classes with 4 or more basis elements have a very simple form and we leave the
reader to check that their LXS problem is virtually trivial.

3.1 A1

The algorithm that we present for the LA1S problem follows the same scheme as
the LIS algorithm. It scans the given permutation σ, keeps information relating
to A1-subsequences of each length, and updates this information as it processes the
current symbol of σ.

At a typical step, just before we process the next symbol s of σ, we shall have a record
of various A1 subsequences. Rather than storing an entire subsequence we exploit
the fact that to avoid 321 is equivalent to having a decomposition as the union of
two increasing subsequences, and we store only the final elements (a, b), with a < b,
of the two subsequences in this decomposition. However, unlike the LIS situation,
it is necessary to store several A1 subsequences of each length.

The basic idea when processing x is to decide whether x can be appended to any
stored 321-avoiding subsequences to make new ones. If we had two A1-subsequences
of length t represented by pairs (a, b) and (c, d) with (a, b) < (c, d) then we do not
need to store (c, d) as it is redundant. This is because any way of extending the

LONGEST SUBSEQUENCES IN PERMUTATIONS 233

subsequence represented by (c, d) to a maximal A1-subsequence entails a way of also
extending the subsequence represented by (a, b). Consequently, if the stored pairs
that represent subsequences of length t are (a1, b1), . . . , (ar, br) and we keep them
in increasing order of first component (a1 < a2 < . . . < ar) then we shall have
b1 > b2 > . . . > br. In particular, there will be at most n pairs to keep rather than
n2.

We process the current symbol x as follows:

Consider the length t subsequences that we are currently maintaining and suppose
they are represented by pairs (a1, b1), . . . , (ar, br) ordered as above. There are three
cases:

1. Any pair (aj, bj) with x < aj represents a subsequence that cannot be extended
using x.

2. If we have a pair with aj < x < bj then we can form a new A1-subsequence of
length t+1 represented by (x, bj). But, as we are only keeping irredundant pairs
we would only store such a new pair if, among those pairs with aj < x < bj , it
was the one with smallest bj . We can identify the unique pair that we need by
a binary search.

3. If we have a pair with aj < bj < x then we can form two new A1-subsequences
of length t+1 represented by (aj, x) and (bj, x) but the latter pair is obviously
redundant. Thus, among the pairs for which aj < bj < x we only have to
consider the one with smallest aj and we can identify it by binary search.

Having identified new candidate pairs to represent A1-subsequences of length t + 1
we then need to scan (again by binary search) the existing list of pairs representing
subsequences of length t + 1. A candidate new pair might have to be discarded
because it is redundant; if it is retained then possibly some of the existing pairs
might become redundant and be discarded.

On conclusion of the scan we consult the lists that we are keeping and identify the
length of the longest A1-subsequence. Each iteration of the main loop has to examine
all the lengths that are under consideration and for each one execute some binary
searches. Therefore the total time is O(n2 log n).

Note By an extension of this algorithm we can also solve, in time O(nk−1 log n),
the LMkS problem where Mk is defined by avoiding the permutation k, . . . , 1. This
extension has some points in common with the Robinson-Schensted algorithm that
associates a pair of standard Young tableaux with a permutation. Indeed, once these
tableaux have been constructed one can read off the lengths of the longest increasing
Mk-subsequences for every value of k (see [13] Theorem 7.23.13).

234 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

3.2 A2

Our algorithm for the LA2S -subsequence of a permutation σ follows the method of
Section 2. So the typical step is to construct the longest A2-subsequence in some p×q
window W defined by two ranges, say I = i, . . . , i+p−1 and J = j, . . . , j+q−1. We
are looking for a subdivision of W to represent a stack sortable permutation αmβ
with α < β < m.

Subdivisions with m < j + q − 1 correspond to stack permutations in a window
defined by I and j, . . . , j + q− 2 and we will already have found the longest of these.
So we only need to consider subdivisions having m = j + q − 1 and those will only
arise if 	 = σ−1(m) lies in the range I . Assuming that this is indeed the case we
have to check O(n) subdivisions where α corresponds to a window defined by the
intervals [i, 	−1] and [j, k−1] and β corresponds to a window defined by the intervals
[+ 1, i + p − 1] and [k, j + q − 2] for each k = j, . . . , j + q − 1.

Since we can process each window in O(n) steps the entire algorithm runs in time
O(n5).

This algorithm is far worse than the algorithms we have managed to find for the other
sets considered in this section. One of the reasons for this is that there seems to be
no way to characterise initial segments of a potential stack sortable permutation by
a small number of parameters.

3.3 B1

Permutations of B1 have the form α1α2 . . . where the segments αi satisfy α1 < α2 <
. . . and each has the form a+1, a+2, . . . , a+p−1, a for some a and p ≥ 1. We exploit
this structure and give an algorithm which is markedly similar to the algorithm for
longest A1-subsequence. As in that algorithm we scan the given permutation σ from
left to right and at each point we maintain a list of B1-subsequences found so far.
Rather than storing an entire B1-subsequence we keep only enough that we can tell
whether a new element of σ can be used to extend it. In this case that means we
have to store two values only: the maximal element m say and the greatest element
d say that is followed by a smaller one.

Suppose that we process the element x of σ. Then for every pair (m, d) representing
a B1-subsequence of length t we have the potential to create a B1-subsequence of
length t+1. In fact, if m < x we do indeed obtain such a subsequence and we record
it as (x, d) while if d < x < m we have a subsequence represented by the new pair
(m, m) (no other case can give a new B1-subsequence of length t + 1).

As in the analysis for the A1-subsequence algorithm not all pairs need to be stored.
For, if (m, d) and (m′, d′) are two pairs representing B1-subsequences of the same
length, and if (m, d) < (m′, d′), then we may discard (m′, d′) since any way of ex-
tending the sequence it represents allows the sequence represented by (m, d) to be
extended also. In particular, only O(n) pairs need be stored for each length. The
algorithm and its analysis now follow the same lines as the LA1S algorithm.

LONGEST SUBSEQUENCES IN PERMUTATIONS 235

3.4 B2

Here we give an algorithm that makes repeated use of the LIS algorithm. We are
looking for a subsequence of the type αβγ where each segment is increasing and
α < γ < β. We consider each position of σ as a possible starting position for a γ
segment. Let j be a typical such position.

First, by Proposition 1.3, we compute F (j, h) which is the length of the LIS that
starts at sj and whose final element has value at most h. Next, also by Proposition
1.3, we compute, for each i < j, the length I(i, j) of the LIS of the first i elements
that has final value smaller than sj.

Then we compute, for each value i = j−1, j−2, . . ., the LIS that ends before position
j and whose first element is si. This done by the longest decreasing subsequence
algorithm running on the reversal of the first j − 1 elements of σ. This algorithm
returns its results, one per O(log n) steps. If 	 is the length of a typical sequence it
finds we can find a B2-subsequence of length I(i− 1, j)+ 	+F (j, si− 1) and we take
the maximal length thereby computed.

Each value of j can be handled in O(n log n) steps for a total of O(n2 log n) steps.

3.5 B3

Permutations of B3 have the form α1α2 . . . where each αi is decreasing and α1 <
α2 < . . . Following [4] we call them layered permutations. We shall describe an
algorithm for determining the maximal layered subsequence of a given permutation
σ = s1s2 . . . sn that runs in time O(n2 log n), where n is the length of the sequence.

The algorithm requires a preprocessing step that computes, for each pair i, j with
1 ≤ i ≤ j ≤ n, the longest decreasing subsequence (possibly empty) that starts at
si and finishes at sj. It is explained how to do this in Proposition 1.3. Let D(i, j)
denote the length of such a sequence.

The main part of the algorithm works with a subset of the set of windows of σ. For
convenience we define the following terms:

M(x, y): the length of the maximal layered subsequence in the window defined by
the intervals 1, . . . , x and 1 . . . , y.

T (x, y): the length of the maximal layered subsequence in the window defined by
the intervals 1, . . . , x and 1 . . . , y that has the additional properties that it contains
the term sx (in particular sx ≤ y) and contains the term y (in particular si = y for
some i ≤ x). In geometric terms this means that there are points in the layered
subsequence on the top and right boundaries of the window. If no such sequence
exists, then T (x, y) is defined to be 0.

Like some of the previous algorithms this one also scans σ from right to left. Just
before processing the symbol si it has computed and stored M(x, y) for all x < i and

236 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

all y ≤ n. In processing si it first computes T (i, sj) for all j ≤ n according to

T (i, sj) =

{
0 if D(j, i) = 0
D(j, i) + M(j − 1, si − 1) otherwise

Once the T (i, sj) are calculated we compute the values M(i, y) by

M(i, y) = max(M(i − 1, y), M(i, y − 1), T (i, y))

obtaining M(i, 1), M(i, 2), . . . in turn.

Each iteration of this loop requires linear time so this part of the algorithm runs in
O(n2). So the dominating factor is finding the maximal decreasing subsequences, at
O(n2 log n).

3.6 B4

Permutations of this class are the juxtaposition of an increasing segment and a
decreasing segment. To find the longest B4-subsequence of a given permutation σ
of length n we run the LIS algorithm on σ first. It finds the longest increasing
subsequence of every initial segment of σ. Then, by considering the reverse of σ we
find the longest decreasing segment of every terminal segment. Finally we combine
these sets to get the longest B4-subsequence of σ. The total time is only O(n log n).

3.7 C1, C2, C3 and C4

Permutations of the class C1 are layered with layers of sizes 1 and 2 only. We
can therefore find the longest C1-subsequence of s1 . . . sn by adapting the algorithm
for the class B3. The only modification needed is to define D(i, j) as the longest
decreasing sequence of length at most 2 from si to sj. Clearly these can be computed
in O(n2) steps and, as noted in the algorithm for B3-subsequences, the remainder of
the algorithm runs in n2 steps also.

An algorithm for the longest C2-subsequence is easily derived from the structure of
permutations in C2; they are increasing except, possibly, for their initial symbol. So
we run the LIS algorithm on the segment that begins at the second position and
prepend the first symbol to the subsequence it finds.

Permutations of the class C3 are simply cyclic shifts of the identity permutation.
Hence we can obtain a O(n2 log n) algorithm to find the longest C3-subsequence of
σ by applying the LIS algorithm to every cyclic shift of σ.

Permutations of the class C4 are obtained from the identity permutation by reversing
some final segment. So, to obtain the longest C4-subsequence of a permutation σ we
apply the LIS algorithm to every permutation obtained from σ by reversing some
final segment. This requires time O(n2 log n).

LONGEST SUBSEQUENCES IN PERMUTATIONS 237

4 Concluding remarks

We have given a number of closed sets for which the LXS problem can be solved
in polynomial time and, by noting that it is at least as hard as the X-recognition
problem, shown that there are some closed sets for which this is not possible. There
remains the question of how closely these two problems are related. For example,
does every finitely based closed set X have a polynomial time LXS problem?

Another open problem is how efficiently one can solve LXS problems for various
‘simple’ sets X . In particular, can the algorithm for finding the longest stack sortable
subsequence be improved so that its performance is more comparable with the other
sets discussed in Section 3?

The LIS problem is often presented as a special case of the Longest Common Sub-
sequence (LCS) problem since the LIS of σ is just the LCS of σ and 1, 2, The
more general LXS problem does not seem to be a special case of the LCS prob-
lem. However, the LXS problem does have a more general context which suggests
numerous other directions to explore. If X is not the union of two proper closed
subsets then [10] there is an infinite permutation π(X) whose finite subsequences
form (under isomorphism) the set of permutations of X . Thus the LXS problem
could be solved if one had a method for finding the longest permutation involved in
two given permutations (admittedly, one of them would be infinite!). The problem of
computing, given two permutations, the longest permutation involved in both (even
if they are finite) is completely unexplored.

Acknowledgement We thank the referee for bringing to our attention the connec-
tion between the LXS problem (when X is defined by avoiding k, . . . , 1) and the
Robinson-Schensted algorithm.

References

[1] M.H. Albert, R. Aldred, M.D. Atkinson and D.A. Holton, Algorithms for pat-
tern involvement in permutations, in Algorithms and Computation, 12th In-
ternational Symposium, ISAAC 2001, Proceedings LNCS 2223, P. Eades, T.
Takaoka (Eds.) pp.355–366.

[2] D. Aldous and P. Diaconis, Longest increasing subsequences: from patience
sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. 36 (1999),
413–432.

[3] R.M. Baer and P. Brock, Natural sorting, J. Soc. Indust. Appl. Math. 10 (1962),
284–304.

[4] M. Bóna, The Solution of a Conjecture of Wilf and Stanley for all layered
patterns, J. Combin. Theory, Ser. A 85 (1999), 96–104.

238 M.H. ALBERT, R.E.L. ALDRED, M.D. ATKINSON ET AL.

[5] P. Bose, J. F. Buss and A. Lubiw, Pattern matching for permutations, Inform.
Process. Lett. 65 (1998), 277–283.

[6] A. L. Delcher, S. Kasif, R.D. Fleischmann, J. Paterson, O. White and S. L.
Salzberg, Alignment of whole genomes, Nucleic Acids Research 27 (1999), 2369–
2376.

[7] M. L. Fredman, On computing the length of longest increasing subsequences,
Discrete Math. 11 (1975), 29–35.

[8] D. Gries, The Science of Programming, Springer Verlag (New York) 1981.

[9] U. Manber, Introduction to Algorithms, Addison-Wesley (Reading, Mass.) 1989.

[10] M.M. Murphy, Ph.D. thesis, University of St Andrews, in preparation.

[11] C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math.
13 (1961), 179–191.

[12] R. Simion and F.W. Schmidt, Restricted permutations, European J. Combin.
6 (1985), 383–406.

[13] R. Stanley, Enumerative Combinatorics, volume 2, Cambridge Studies in Ad-
vanced Mathematics 62, Cambridge University Press (Cambridge, UK) 1999.

[14] J.M. Steele, Probability Theory and Optimization, SIAM 1997.

[15] W. Unger, The complexity of colouring circle graphs, Proc. 9th Annual Sympo-
sium on Theoretical Aspects of Computer Science, 1992, Springer Lecture Notes
in Computer Science 577, 389–400.

[16] W. Unger, On the k-colouring of circle graphs, Proc. 5th Annual Symposium
on Theoretical Aspects of Computer Science, 1988, Springer Lecture Notes in
Computer Science 294, 61–72.

(Received 20 June 2002)

